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a b s t r a c t

We developed an equation of state based on statistical–mechanical perturbation theory for pure and
mixtures alkali metals. Thermodynamic properties were calculated by the equation of state, based on
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eywords:
quation of state

the perturbed-chain statistical associating fluid theory (PC-SAFT). The model uses two parameters for a
monatomic system, segment size, �, and segment energy, ε. In this work, we calculate the saturation and
compressed liquid density, heat capacity at constant pressure and constant volume, isobaric expansion
coefficient, for which accurate experimental data exist in the literatures. Results on the density of binary
and ternary alkali metal alloys of Cs–K, Na–K, Na–K–Cs, at temperatures from the freezing point up
to several hundred degrees above the boiling point are presented. The calculated results are in good

ental

lkali metals
hermodynamic properties agreement with experim

. Introduction

Metals, both in liquid and in vapor states, are complicated in
tructure. Liquid alkali metals and their alloys are widely used in
odern science and technology, for example, in nuclear energetic,

nd medicine [1]. These applications need the knowledge of high-
emperature properties of alkali metals because these metals are
eated to high-temperatures in these applications [2]. It leads to
poor accuracy in the experimental studies at high-temperatures.
hese considerations also make the metals suitable candidates for
heoretical investigation and can be another pathway for exploring
he high-temperature properties of alkali metals.

Liquids have been studied theoretically using statistical
echanics. Modern perturbation theories of liquids have been

eveloped [3–6], based on the recognition that the structure of a
ense fluid is determined primarily by the repulsive forces, so that
uids of spherical or non-spherical hard bodies can serve as use-

ul reference systems. The influence of the attractive forces and
he softness of repulsions can be treated by statistical–mechanical
erturbation theory. A statistical–mechanical theory has recently
een presented to derive a new analytical equation of state (EOS)

f fluids [6–10].

The PC-SAFT model [10] is a theoretical-based equation of state.
n contrast to many other models, PC-SAFT explicitly accounts for
he non-spherical shape of a molecule, particularly of a polymer.
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The equation of state was already successfully applied to a huge
number of systems containing gases, solvents, polymers, and co-
polymers, as well as to associating systems [10].

In this study, the PC-SAFT equation of state is extended to pure
and mixtures of liquid alkali metals. This equation belongs to a class
of theoretically based equations of state that are formulated based
on continuum space (as opposed to lattice space) liquid state per-
turbation theories. A comparison with other equations of state for
alkali metals [11–13], the PC-SAFT equation predicted not only the
liquid density of pure and mixtures, but also curves for compressed
liquid density, heat capacity at constant pressure and constant vol-
ume, and isobaric expansion coefficient.

2. Theory

In the PC-SAFT equation of state, molecules are visualized to
be chains of freely jointed spherical segments exhibiting attrac-
tive forces among each other, in which the pair potential for the
segment of a chain is given by a square-well potential suggested
by Chen and Kreglewski [14]. In this equation, non-associating
molecules are characterized by three pure-component parameters:
the temperature-independent segment diameter �, the depth of
the potential ε, and the number of segments per chain m.

The PC-SAFT equation is based on perturbation theories that

allow dividing the interactions of molecules into a repulsive part
and a contribution due to the attractive part of the potential.
The repulsive interactions of this equation are described with a
hard-chain expression derived by Chapman et al. [7] whereas the
attractive interactions are separated into dispersive interactions

dx.doi.org/10.1016/j.tca.2010.08.006
http://www.sciencedirect.com/science/journal/00406031
http://www.elsevier.com/locate/tca
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Table 1
Parameters used for alkali metals.

Metal � (Å) ε/k (K) � × 104 (J/mol K2)

Li 2.8880 2941.041 17.6
Na 3.5078 1940.862 14.6
48 M.H. Mousazadeh et al. / Therm

nd a contribution due to association. Here, we present only the
elevant expressions of the PC-SAFT equation required in this work;
he reader may consult the original papers [7,10,14] for details
f the expressions concerning the PC-SAFT equation of state. For
on-associating molecules, the PC-SAFT equation of state written

n terms of reduced quantities of the Helmholtz energy for an N-
omponent mixture can be expressed as

˜res = ãhc + ãdisp (1)

The hard-chain reference contribution is given by

˜hc = m̄ãhs + ãchain (2)

here ãhs is the Helmholtz energy of the hard-sphere fluid, which
s given on a per-segment basis by

ahs

RT
= 1

�0

[
3�1�2

1 − �3
+ �3

2

�3(1 − �3)2
+

(
�3

2

�2
3

− �0

)
ln(1 − �3)

]
(3)

chain is the Helmholtz energy due to the forming of chains given
y

achain

RT
=

∑
i

Xi(1 − mi)ln ghs
ii (�ii) (4)

nd m̄ =
∑N

i=1mi is the mean segment number in the mixture.
The radial distribution function of hard-sphere fluid is given by

hs
ij = 1

1 − �3
+

(
didj

di + dj

)
3�3

(1 − �3)2
+

(
didj

di + dj

)2
2�2

2

(1 − �3)3
(5)

ith

k = �

6
�
∑

i

Ximid
k
i k = 0, 1, 2, 3 (6)

here di is the temperature-dependent segment diameter of com-
onent i, given by

i = �i

[
1 − 0.12 exp

[−3εi

kT

]]
(7)

here k is the Boltzmann constant and T is the absolute tempera-
ure. The dispersion contribution to the Helmholtz energy extended
o chain molecules is given as a sum of first- and second-order
ontributions as

˜disp = ã1 + ã2 (8)

here

˜1 = −2��I1(�, m̄)m2ε�3 (9)

nd

˜2 = −��m̄C1I2(�, m̄)m2ε2�3 (10)

hich depend on the integrals of power series of sixth-order in
ensity,

1 =
6∑

i=0

ai�
i (11)

nd

2 =
6∑

i=0

bi�
i (12)

ith
i = a0i + m − 1
m

a1i + m − 1
m

m − 2
m

a2i (13)

i = b0i + m − 1
m

b1i + m − 1
m

m − 2
m

b2i (14)
K 4.3275 1615.121 19.7
Rb 4.6289 1494.280 24.3
Cs 5.0038 1433.099 32.2

with the universal constants a0i, a1i, a2i, b0i, b1i, b2i [10].
The term C1 given in Eq. (10) can be expressed as

C1 =
(

1 + Zhc + �
∂Zhc

∂�

)−1

=
(

1 + m
8� − 2�2

(1 − �)4
+ (1 − m)

20� − 27�2 + 12�3 − 2�4

((1 − �)(2 − �))2

)−1

(15)

where Zhc is the compressibility factor of the hard-chain reference
contribution and � = 
3 is the packing fraction. The van der Waals
one-fluid mixing rules are represented by

m2ε�3 =
N∑

i=1

N∑
j=1

xixjmimj

( εij

kT

)
�3

ij (16)

and

m2ε2�3 =
N∑

i=1

N∑
j=1

xixjmimj

( εij

kT

)2
�3

ij (17)

which contain the conventional combining rules to determine the
cross terms between a pair of different segments,

�ij = 1
2

(�i + �j) (18)

εij =
√

εiεj(1 − kij) (19)

where kij is an adjustable interaction parameter, which is intro-
duced to correct the segment–segment interactions of unlike
chains. The three pure-component parameters of the PC-SAFT
model, segment number m, segment diameter �, and segment
energy parameter ε, can be regressed by fitting pure-component
data.

3. Results and discussion

The PC-SAFT equation of state is applied to Alkali metals in a
wide range of pressure and temperature. All metallic systems are
considered as monatomic systems (m = 1). Therefore, knowing two
adjustable parameters � and ε is sufficient to predict the equation
of state for liquid metals. The parameters were identified for five
alkali metals by correlating saturated liquid density. Table 1 shows
regressed values (ε, �) of PC-SAFT parameters. With knowing the
values of ε and �, can predict the PVT properties of liquid metals.
Experimental data are taken from [15]. We have computed some
selected thermodynamic properties of five alkali metals in liquid
phase. The thermodynamic properties in question are the satura-
tion and compressed liquid density for pure and mixtures, heat
capacity at constant pressure and constant volume, and Isobaric

expansion coefficient. In what follows, we will discuss in detail the
results obtained for each property. We first examine the volumetric
properties and then other thermodynamic properties of fluids will
be discussed.
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Table 2
Result for saturated liquid density of alkali metals with PC-SAFT equation of state.

Metal �T (K) aNP bAAD (%) AAD (%)
Previous work
[11]

Li 700–1700 11 2.58 0.64
Na 400–1200 9 2.03 2.07
K 400–1100 8 1.45 1.77
Rb 400–1200 9 1.59 2.67
Cs 400–1200 9 1.83 2.12
Average 1.89 1.85

a NP represents the number of data point’s examined.
b AAD (%): absolute average deviation = 100/NP

∑NP

i=1
|�i,Cal. − �i,Exp.|/�i,Exp..

Table 3
The calculated absolute deviation for saturated liquid density of Rb compared with
experimental data [15].

T (K) p (10−6 MPa) p (mol m−3) Deviation (%)

Calculation Experimental

400 0.1614 16,436 16,959 3.09
500 16.85 16,046 16,457 2.50
600 359.7 15,640 15,916 1.73
700 3131 15,230 15,376 0.95
800 15,660 14,818 14,854 0.25
900 54,310 14,403 14,345 0.40
1000 146,300 13,981 13,836 1.05
1100 328,400 13,547 13,312 1.76

4

4

g
f
d
K
a
p
p
p
r

F
c

Table 4
The calculated absolute deviation for the compressed liquid density of Cs compared
with experimental data [15].

T (K) p (MPa) �exp (mol m−3) �cal (mol m−3) Deviation (%)

600 10 12,675 12,332 2.71
600 20 12,788 12,364 3.32
600 40 12,998 12,427 4.39
600 60 13,189 12,488 5.32
600 80 13,366 12,546 6.13
600 100 13,529 12,603 6.85
1000 10 10,990 10,976 0.13
1000 20 11,161 11,028 1.20
1000 40 11,469 11,126 2.99
1000 60 11,739 11,218 4.44
1000 80 11,981 11,304 5.65
1000 100 12,200.3 11,385.7 6.68
1600 10 8015 8115 1.25
1600 20 8411 8408 0.04
1600 40 9014.9 8814.2 2.23
1600 60 9484 9107 3.97
1600 80 9874 9341 5.40
1600 100 10,211 9538 6.59
AAD (%) 3.84

Table 5
Predicted results for the compressed densities of alkali metals.

Metal �T (K) �p (MPa) AAD (%) AAD (%)
Previous work
[11]

Li 600–1600 10–100 3.30 2.62
Na 600–1600 10–100 3.15 2.00
K 600–1600 10–100 2.45 2.37
Rb 600–1600 10–100 2.93 3.83
Cs 600–1600 10–100 3.84 3.46
1200 643,500 13,093 12,762 2.59
AAD (%) 1.59

. Thermodynamic properties from equation of state

.1. The saturation liquid density

The calculation of the density or the molar volume from the
iven pressure and temperature is one of the most frequently per-
ormed operations in phase equilibrium calculations. Using P–T
ata [15], we have calculated the saturation liquid density of Li, Na,
, Rb, and Cs. The results are shown in Table 2. The result for Rb as
typical example is also shown in Table 3, on which any deviation
attern is more obvious. In order to show how the equation of state
asses through the experimental points, we have plotted deviation

lots and the saturated liquid density in Fig. 1. Comparison of the
esults with previous work [11] has been shown in Table 2.

ig. 1. Deviation plot for the predicted saturation liquid density of alkali metals
ompared with experiment.
Average 3.13 2.87

4.2. The compressed liquid density

The ability of the present equation of state to predict PVT
data is presented. The outcome of the density calculations of all
alkali metals is gathered in Tables 4 and 5. Experimental data
are taken from [16–20]. Table 5 shows comparison of the results
with previous work [11]. The calculations cover the pressure range
10 MPa < p < 100 MPa and temperature range 600 K < T < 1600 K.
Comparison of the results in Fig. 2, show the present equation of
state is accurate for representation the compressed liquid density
data for them.
Fig. 2. Comparison between calculated and experimental results for saturated liquid
density of alkali metals. The line markers show the results of the PC-SAFT equation
of state and the corresponding filled ones are experimental data [15].
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Table 6
Predicted results for the liquid densities of alkali metals alloy.

Alloy �T (K) �p (MPa) AAD (%)

0.9 K + 0.1 Cs 350–1150 1.499 × 10−10–2.974 × 10−1 1.60(3.22)a

0.8759 K + 0.1241 Cs 400–1000 6.356 × 10−10–8.514 × 10−1 4.51(5.58)
0.7015 K + 0.2985 Cs 400–1000 1.271 × 10−7–1.019 × 10−1 2.13(3.62)
0.3032 K + 0.6978 Cs 400–1000 2.725 × 10−7–1.403 × 10−1 2.26(4.31)
0.3 K + 0.7 Cs 350–1050 2.274 × 10−7–2.134 × 10−1 1.86(4.09)
0.2 K + 0.8 Cs 350–1000 2.403 × 10−10–1.501 × 10−1 1.95(4.12)
0.1 K + 0.9 Cs 350–1000 2.532 × 10−10–1.597 × 10−1 1.85(4.00)
0.1 K + 0.9 Na 600–1200 1.854 × 10−5–2.238 × 10−1 1.84(2.98)
0.2 K + 0.8 Na 600–1200 2.620 × 10−5–2.252 × 10−1 1.80(2.69)
0.319 K + 0.681 Na 600–1200 3.739 × 10−5–2.450 × 10−1 1.76(3.10)
0.4 K + 0.6 Na 600–1200 4.634 × 10−5–2.654 × 10−1 1.79(2.87)
0.5 K + 0.5 Na 600–1200 5.897 × 10−5–2.953 × 10−1 1.77(2.85)
0.598 K + 0.402 Na 600–1200 7.358 × 10−5–3.277 × 10−1 1.75(2.82)
0.7 K + 0.3 Na 600–1200 9.077 × 10−5–3.605 × 10−1 1.70(2.51)
0.8 K + 0.2 Na 600–1200 1.110 × 10−4–3.925 × 10−1 1.68(2.74)
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between the theoretical and corresponding experimental values is
reasonably good. The maximum differences between the calculated
and experimental are 0.000077 K−1 for Rb.

Table 7
The absolute average deviation percent of thermodynamic properties from literature
values [15].

Metal �T (K) �p (MPa) CV CP ˛
0.9 K + 0.1 Na 600–1200
0.1 Na + 0.4749 K + 0.4246 Cs 450–1000

a Maximum deviations in parentheses.

.3. Density of binary and ternary

We have calculated the densities of alkali metal alloys of Cs–K,
a–K, Na–K–Cs, at temperatures from the freezing point up to sev-
ral hundred degrees above the boiling point. The experimental
ensities are taken from Ref. [21].

In this work we have generalized the correlation to the mixtures,
sing simplest combining rules for predicting unlike-molecule

nteractions from the like molecule interactions, are a geometric
ean for ε and an arithmetic mean for �. Thus, our combining rules
ould be:

ij = 1
2

(�i + �j) (20)

ij =
√

εiεj (21)

Analysis of the results in Table 6, shows we can acquire very
ood results (AAD (%) = 2.23), as same as other works [12,13] (AAD
%) = 3.02). This fact reveals that alkali metal alloys obey nearly the
ame two-parameter intermolecular pair potential energy func-
ions of singlet and triplet.

.4. Heat capacities

The estimation of caloric data such as heat capacities is impor-
ant in technological application. The heat capacity at constant
olume and constant pressure are determined by the derivative
f Helmholtz energy and the pressure which are direct calculation
rom the PC-SAFT equation of state:

V(T, �) = −T

(
∂2a

∂T2

)
(22)

p(T, �) = CV(T, �) +
[(

∂p

∂T

)2

�

(
∂�

∂p

)
T

(
T

�2

)]
(23)

The heat capacity of a liquid metal is made up of several con-
ributions, a kinetic term, an electronic term, and a configurational
erm due to inter atomic forces. The kinetic term for mono atomic
uids is 3R/2, where R gas constant. In this work PC-SAFT is use to
etermined the configurational term from Eq. (22). According to the
ermi–Sommerfeld theory, the contribution Cel from conduction

lectrons is given by

el = �T (24)

here � is a constant for temperatures much smaller than the effec-
ive Fermi temperature [22]. For the metals being considered here
1.314 × 10−4–4.093 × 10−1 1.73(3.29)
2.036 × 10−6–1.087 × 10−1 5.87(7.39)

the Fermi temperature is of order of 104 K. Therefore Eq. (24) should
give a good approximation of the electronic heat capacity of these
simple metals in liquid state. Values are given in Table 1.

The AAD (%) of heat capacities at constant pressure and con-
stant volume have also been included in Table 7. The deviations
are of the order of 18%, and 13%, respectively, for Cp and Cv. The
maximum and minimum difference between experimental and cal-
culated values of Cp for Rb are 11.39 J/mol K (2.72 cal/mol K) and
0.14 J/mol K (0.03 cal/mol K), and the maximum and minimum dif-
ference between experimental and calculated values of Cv for Rb
are 5.86 J/mol K (1.40 cal/mol K) and 0.06 J/mol K (0.01 cal/mol K).
The calculated results are in good agreement with experimental
data. It is well known that for the alkali metals electronic contribu-
tion to the heat capacities is significantly large varying from 0.5 to
3.5 J/mol K. Should the electronic contributions were added to the
calculated results, the agreement would have been better.

4.5. Isobaric expansion coefficient

The constant pressure coefficient of thermal expansion ˛ of a
substance is defined by the equation

˛ = 1
V

(
∂V

∂T

)
p

(25)

Note that ˛ is the fractional change in volume (�V/V) divided by
the corresponding change in temperature �T, and thus ˛ has the
units of per kelvin, K−1. The evaluated results for thermal expansion
are presented in Table 7. From table it is seen that the agreement
Li 500–1200 0–3 – 9.13 46.00
Na 400–1200 0–8 13.06 19.57 31.94
K 400–1100 0–60 13.60 21.00 19.66
Rb 400–1000 0–60 13.45 19.50 18.95
Cs 400–900 0–60 13.20 21.77 16.57
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. Concluding remarks

There exist some similarities between fluid metals and ordinary
uids that lead us to check the present equation of state for them.
or example, liquid metals can be treated as simple monatomic
ystems and like normal fluids. The PC-SAFT equation of state was
roposed and applied to estimate the physical properties of metals
p to the several hundred degrees above the boiling point for alkali
etals. Model parameters � and ε were obtained by regressing

aturated liquid density data.
The thermodynamic functions of five alkali metals were calcu-

ated using a statistical–mechanical-based equation of state known
s PC-SAFT on a wide PVT range. Perturbation theory with hard-
phere reference system is a good first approximation for the study
f static properties of liquid alkali metals. The interesting point of
his work is that this EOS is also suitable to employ to predict other
hermodynamic properties as well as density within acceptable
ccuracies.
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